Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43.821
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2322135121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38568964

RESUMEN

Endothelial cells (ECs) line the wall of blood vessels and regulate arterial contractility to tune regional organ blood flow and systemic pressure. Chloride (Cl-) is the most abundant anion in ECs and the Cl- sensitive With-No-Lysine (WNK) kinase is expressed in this cell type. Whether intracellular Cl- signaling and WNK kinase regulate EC function to alter arterial contractility is unclear. Here, we tested the hypothesis that intracellular Cl- signaling in ECs regulates arterial contractility and examined the signaling mechanisms involved, including the participation of WNK kinase. Our data obtained using two-photon microscopy and cell-specific inducible knockout mice indicated that acetylcholine, a prototypical vasodilator, stimulated a rapid reduction in intracellular Cl- concentration ([Cl-]i) due to the activation of TMEM16A, a Cl- channel, in ECs of resistance-size arteries. TMEM16A channel-mediated Cl- signaling activated WNK kinase, which phosphorylated its substrate proteins SPAK and OSR1 in ECs. OSR1 potentiated transient receptor potential vanilloid 4 (TRPV4) currents in a kinase-dependent manner and required a conserved binding motif located in the channel C terminus. Intracellular Ca2+ signaling was measured in four dimensions in ECs using a high-speed lightsheet microscope. WNK kinase-dependent activation of TRPV4 channels increased local intracellular Ca2+ signaling in ECs and produced vasodilation. In summary, we show that TMEM16A channel activation reduces [Cl-]i, which activates WNK kinase in ECs. WNK kinase phosphorylates OSR1 which then stimulates TRPV4 channels to produce vasodilation. Thus, TMEM16A channels regulate intracellular Cl- signaling and WNK kinase activity in ECs to control arterial contractility.


Asunto(s)
Cloruros , Proteínas Serina-Treonina Quinasas , Ratones , Animales , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Cloruros/metabolismo , Células Endoteliales/metabolismo , Canales Catiónicos TRPV/metabolismo , Transducción de Señal/fisiología
2.
Biochem Med (Zagreb) ; 34(2): 020705, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38665867

RESUMEN

Introduction: This study aimed to examine whether the Canadian Laboratory Initiative on Pediatric Reference Intervals (CALIPER) reference intervals for 19 commonly used biochemical assays (potassium, sodium, chloride, calcium, magnesium, inorganic phosphorous, glucose, urea, creatinine, direct and total bilirubin, C-reactive protein (CRP), total protein, albumin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP) and lactate dehydrogenase (LD)) could be applied to the newborn population of one Croatian clinical hospital. Materials and methods: Reference interval verification was performed according to the CLSI EP28-A3c guidelines. Samples of healthy newborns were selected using the direct a posteriori sampling method and analyzed on the Beckman Coulter AU680 biochemical analyzer. If verification wasn't satisfactory, further procedure included de novo determination of own reference intervals by analyzing 120 samples of healthy newborns. Results: After the first set of measurements, 14/19 tested reference intervals were adopted for use: calcium, inorganic phosphorous, glucose, urea, creatinine, total bilirubin, CRP, total protein, albumin, AST, ALT, GGT, ALP and LD. A second set of samples was tested for 5 analytes: potassium, sodium, chloride, magnesium and direct bilirubin. The verification results of the additional samples for sodium and chloride were satisfactory, while the results for potassium, magnesium and direct bilirubin remained unsatisfactory and new reference intervals were determined. Conclusions: The CALIPER reference intervals can be implemented into routine laboratory and clinical practice for the tested newborn population for most of the analyzed assays, while own reference intervals for potassium, magnesium and direct bilirubin have been determined.


Asunto(s)
Bilirrubina , Humanos , Recién Nacido , Valores de Referencia , Croacia , Bilirrubina/sangre , Masculino , Femenino , Proteína C-Reactiva/análisis , Creatinina/sangre , Aspartato Aminotransferasas/sangre , Alanina Transaminasa/sangre , Análisis Químico de la Sangre/normas , gamma-Glutamiltransferasa/sangre , Fosfatasa Alcalina/sangre , Potasio/sangre , Magnesio/sangre , L-Lactato Deshidrogenasa/sangre , Cloruros/sangre , Calcio/sangre , Glucemia/análisis , Sodio/sangre
3.
Nat Commun ; 15(1): 3480, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658537

RESUMEN

The analysis of neural circuits has been revolutionized by optogenetic methods. Light-gated chloride-conducting anion channelrhodopsins (ACRs)-recently emerged as powerful neuron inhibitors. For cells or sub-neuronal compartments with high intracellular chloride concentrations, however, a chloride conductance can have instead an activating effect. The recently discovered light-gated, potassium-conducting, kalium channelrhodopsins (KCRs) might serve as an alternative in these situations, with potentially broad application. As yet, KCRs have not been shown to confer potent inhibitory effects in small genetically tractable animals. Here, we evaluated the utility of KCRs to suppress behavior and inhibit neural activity in Drosophila, Caenorhabditis elegans, and zebrafish. In direct comparisons with ACR1, a KCR1 variant with enhanced plasma-membrane trafficking displayed comparable potency, but with improved properties that include reduced toxicity and superior efficacy in putative high-chloride cells. This comparative analysis of behavioral inhibition between chloride- and potassium-selective silencing tools establishes KCRs as next-generation optogenetic inhibitors for in vivo circuit analysis in behaving animals.


Asunto(s)
Caenorhabditis elegans , Neuronas , Optogenética , Pez Cebra , Animales , Caenorhabditis elegans/genética , Neuronas/metabolismo , Neuronas/fisiología , Optogenética/métodos , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Humanos , Drosophila , Canales de Potasio/metabolismo , Canales de Potasio/genética , Cloruros/metabolismo , Animales Modificados Genéticamente , Conducta Animal , Células HEK293 , Drosophila melanogaster
4.
Anal Chem ; 96(15): 5832-5842, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38573917

RESUMEN

Chronic kidney disease is one of the major health issues worldwide. However, diagnosis is now highly centralized in large laboratories, resulting in low access to patient monitoring and poor personalized treatments. This work reports the development of a graphene-based lab-on-a-chip (G-LOC) for the digital testing of renal function biomarkers in serum and saliva samples. G-LOC integrates multiple bioelectronic sensors with a microfluidic system that enables multiplex self-testing of urea, potassium, sodium, and chloride. The linearity, limit of detection (LOD), accuracy, and coefficient of variability (CV) were studied. Accuracy values higher than 95.5% and CV lower than 9% were obtained for all of the biomarkers. The analytical performance was compared against three reference lab benchtop analyzers by measuring healthy- and renal-failure-level samples of serum. From receiver operating characteristic (ROC) plots, sensitivities (%) of 99.7, 97.6, 99.1, and 89.0 were obtained for urea, potassium, sodium, and chloride, respectively. Then, the test was evaluated in noninvasive saliva samples and compared against reference methods. Correlation and Bland-Altman plots showed good correlation and agreement of the G-LOC with the reference methods. It is noteworthy that the precision of G-LOC was similar to better than benchtop lab analyzers, with the advantage of being highly portable. Finally, a user testing study was conducted. The analytical performance obtained with untrained volunteers was similar to that obtained with trained chemists. Additionally, based on a user experience survey, G-LOC was found to have very simple usability and would be suitable for at-home diagnostics.


Asunto(s)
Grafito , Enfermedades Renales , Humanos , Cloruros , Autoevaluación , Dispositivos Laboratorio en un Chip , Riñón , Enfermedades Renales/diagnóstico , Biomarcadores , Urea , Potasio , Sodio
5.
Biochem Biophys Res Commun ; 710: 149892, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38581951

RESUMEN

Chlorination is a potent disinfectant against various microorganisms, including bacteria and viruses, by inducing protein modifications and functional changes. Chlorine, in the form of sodium hypochlorite, stands out as the predominant sanitizer choice due to its cost-effectiveness and powerful antimicrobial properties. Upon exposure to chlorination, proteins undergo modifications, with amino acids experiencing alterations through the attachment of chloride or oxygen atoms. These modifications lead to shifts in protein function and the modulation of downstream signaling pathways, ultimately resulting in a bactericidal effect. However, certain survival proteins, such as chaperones or transcription factors, aid organisms in overcoming harsh chlorination conditions. The expression of YabJ, a highly conserved protein from Staphylococcus aureus, is regulated by a stress-activated sigma factor called sigma B (σB). This research revealed that S. aureus YabJ maintains its structural integrity even under intense chlorination conditions and harbors sodium hypochlorite molecules within its surface pocket. Notably, the pocket of S. aureus YabJ is primarily composed of amino acids less susceptible to chlorination-induced damage, rendering it resistant to such effects. This study elucidates how S. aureus YabJ evades the detrimental effects of chlorination and highlights its role in sequestering sodium hypochlorite within its structure. Consequently, this process enhances resilience and facilitates adaptation to challenging environmental conditions.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Cloruros/metabolismo , Hipoclorito de Sodio/farmacología , Hipoclorito de Sodio/metabolismo , Proteínas Bacterianas/metabolismo , Aminoácidos/metabolismo
6.
Food Microbiol ; 121: 104516, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637078

RESUMEN

Oxidation-reduction potential (ORP) is commonly used as a rapid measurement of the antimicrobial potential of free chlorine during industrial fresh produce washing. The current study tested the hypothesis that ORP can act as a "single variable" measurement of bacterial (vegetative and endospores) inactivation effectiveness with free chlorine irrespective of the water pH value. This situation has on occasion been assumed but never confirmed nor disproven. Chlorine-dosed pH 6.5 and 8.5 phosphate buffer solutions were inoculated with Escherichia coli (E. coli), Listeria innocua (L. innocua), or Bacillus subtilis (B. subtilis) endospores. ORP, free chlorine (FC), and log reduction were monitored after 5 s (for E. coli and L. innocua) and up to 30 min (for B. subtilis spores) of disinfection. Logistic and exponential models were developed to describe how bacteria reduction varied as a function of ORP at different pH levels. Validation tests were performed in phosphate buffered pH 6.5 and 8.5 cabbage wash water periodically dosed with FC, cabbage extract and a cocktail of Escherichia coli O157:H7 (E. coli O157:H7) and Listeria monocytogenes (L. monocytogenes). The built logistic and exponential models confirmed that at equal ORP values, the inactivation of the surrogate strains was not consistent across pH 6.5 and pH 8.5, with higher reductions at higher pH. This is the opposite of the well-known free chlorine-controlled bacterial inactivation, where the antibacterial effect is higher at lower pH. The validation test results indicated that in the cabbage wash water, the relationship between disinfection efficiency and ORP was consistent with the oxidant demand free systems. The study suggests that ORP cannot serve as a reliable single variable measurement to predict bacterial disinfection in buffered systems. When using ORP to monitor and control the antibacterial effectiveness of the chlorinated wash water, it is crucial to take into account (and control) the pH.


Asunto(s)
Escherichia coli O157 , Listeria monocytogenes , Listeria , Desinfección/métodos , Cloro/farmacología , Cloro/análisis , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Oxidantes , Recuento de Colonia Microbiana , Manipulación de Alimentos/métodos , Cloruros , Oxidación-Reducción , Agua/química , Antibacterianos , Concentración de Iones de Hidrógeno , Fosfatos
7.
Chemosphere ; 355: 141855, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570051

RESUMEN

Wastewater polluted by organics can be treated by using electro-generated active chlorine, even if this promising route presents some important drawbacks such as the production of chlorinated by-products. Here, for the first time, this process was studied in a microfluidic electrochemical reactor with a very small inter-electrode distance (145 µm) using a water solution of NaCl and phenol and a BDD anode. The potential production of chloroacetic acids, chlorophenols, carboxylic acids, chlorate and perchlorate was carefully evaluated. It was shown, for the first time, up to our knowledge, that the use of the microfluidic device allows to perform the treatment under a continuous mode and to achieve higher current efficiencies and a lower generation of some important by-products such as chlorate and perchlorate. As an example, the use of the microfluidic apparatus equipped with an Ag cathode allowed to achieve a high removal of total organic carbon (about 76%) coupled with a current efficiency of 17% and the production of a small amount of chlorate (about 30 ppm) and no perchlorate. The effect of many parameters (namely, flow rate, current density and nature of cathode) was also investigated.


Asunto(s)
Cloro , Contaminantes Químicos del Agua , Técnicas Electroquímicas , Percloratos , Microfluídica , Agua , Cloratos , Cloruros , Oxidación-Reducción , Electrodos , Contaminantes Químicos del Agua/análisis
8.
Sci Rep ; 14(1): 7846, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570623

RESUMEN

Previous studies have suggested that levels of sodium and chloride in the blood may be indicative of the prognosis of different medical conditions. Nevertheless, the assessment of the prognostic significance of the sodium-to-chloride (Na/Cl) ratio in relation to in-hospital mortality among individuals suffering from acute heart failure (AHF) remains unexplored. In this study, the participants were selected from the Medical Information Mart for Intensive Care IV database and divided into three groups based on the Na/Cl ratio level upon admission. The primary results were the mortality rate within the hospital. Cox regression, Kaplan-Meier curves, receiver operator characteristic (ROC) curve analysis and subgroup analyses were utilized to investigate the correlation between the admission Na/Cl ratio and outcomes in critically ill patients with AHF. A total of 7844 patients who met the selection criteria were included in this study. After adjusting for confounders, the multivariable Cox regression analysis revealed that the baseline Na/Cl ratio significantly elevated the risk of in-hospital mortality among critically ill patients with AHF (HR = 1.34, 95% CI 1.21-1.49). Furthermore, when the Na/Cl ratio was converted into a categorical factor and the initial tertile was taken as a point of comparison, the hazard ratios (HRs) and 95% confidence intervals (CIs) for the second and third tertiles were 1.27 (1.05-1.54) and 1.53 (1.27-1.84), respectively. Additionally, a P value indicating a significant trend of < 0.001 was observed. ROC curve analysis showed that Na/Cl ratio had a more sensitive prognostic value in predicting in-hospital mortality of AHF than the sodium or chloride level alone (0.564 vs. 0.505, 0.544). Subgroup examinations indicated that the association between the Na/Cl ratio upon admission and the mortality rate of critically ill patients with AHF remained consistent in the subgroups of hyponatremia and hypochlorhydria (P for interaction > 0.05). The linear relationship between the Na/Cl ratio and in-hospital mortality in AHF patients indicates a positive association.


Asunto(s)
Insuficiencia Cardíaca , Cloruro de Sodio , Humanos , Cloruros , Mortalidad Hospitalaria , Enfermedad Crítica , Pronóstico , Sodio , Estudios Retrospectivos
9.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1138-1156, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38658154

RESUMEN

Manganese (Mn) is an essential element for plants and plays a role in various metabolic processes. However, excess manganese can be toxic to plants. This study aimed to analyze the changes in various physiological activities and the transcriptome of Arabidopsis under different treatments: 1 mmol/L MnCl2 treatment for 1 day or 3 days, and 1 day of recovery on MS medium after 3 days of MnCl2 treatment. During the recovery phase, minor yellowing symptoms appeared on the leaves of Arabidopsis, and the content of chlorophyll and carotenoid decreased significantly, but the content of malondialdehyde and soluble sugar increased rapidly. Transcriptome sequencing data shows that the expression patterns of differentially expressed genes exhibit three major models: initial response model, later response model, recovery response model. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis identified several affected metabolic pathways, including plant hormone signal transduction mitosolysis activates protein kinase (MAPK) phytohormone signaling, phenylpropanoid biosynthesis, ATP binding cassette transporters (ABC transporter), and glycosphingolipid biosynthesis. Differential expressed genes (DEGs) involved in phenylpropanoid biosynthesis, ABC transporter, and glycosphingolipid biosynthesis, were identified. Sixteen randomly selected DEGs were validated through qRT-PCR and showed consistent results with RNA-seq data. Our findings suggest that the phenylpropanoid metabolic pathway is activated to scavenge reactive oxygen species, the regulation of ABC transporter improves Mn transport, and the adjustment of cell membrane lipid composition occurs through glycerophospholipid metabolism to adapt to Mn stress in plants. This study provides new insights into the molecular response of plants to Mn stress and recovery, as well as theoretical cues for cultivating Mn-resistant plant varieties.


Asunto(s)
Arabidopsis , Manganeso , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/metabolismo , Manganeso/metabolismo , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Perfilación de la Expresión Génica , Cloruros/metabolismo , Compuestos de Manganeso/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Carotenoides/metabolismo
10.
Huan Jing Ke Xue ; 45(5): 3088-3097, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629569

RESUMEN

Mulching to conserve moisture has become an important agronomic practice in saline soil cultivation, and the effects of the dual stress of salinity and microplastics on soil microbes are receiving increasing attention. In order to investigate the effect of polyethylene microplastics on the microbial community of salinized soils, this study investigated the effects of different types (chloride and sulphate) and concentrations (weak, medium, and strong) of polyethylene (PE) microplastics (1% and 4% of the dry weight mass of the soil sample) on the soil microbial community by simulating microplastic contamination in salinized soil environments indoors. The results showed that:PE microplastics reduced the diversity and abundance of microbial communities in salinized soils and were more strongly affected by sulphate saline soil treatments. The relative abundance of each group of bacteria was more strongly changed in the sulphate saline soil treatment than in the chloride saline soil treatment. At the phylum level, the relative abundance of Proteobacteria was positively correlated with the abundance of fugitive PE microplastics, whereas the relative abundances of Bacteroidota, Actinobacteriota, and Acidobacteria were negatively correlated with the abundance of fugitive PE microplastics. At the family level, the relative abundances of Flavobacteriaceae, Alcanivoracaceae, Halomonadaceae, and Sphingomonasceae increased with increasing abundance of PE microplastics. The KEGG metabolic pathway prediction showed that the relative abundance of microbial metabolism and genetic information functions were reduced by the presence of PE microplastics, and the inhibition of metabolic functions was stronger in sulphate saline soils than in chloride saline soils, whereas the inhibition of genetic information functions was weaker than that in chloride saline soils. The secondary metabolic pathways of amino acid metabolism, carbohydrate metabolism, and energy metabolism were inhibited. It was hypothesized that the reduction in metabolic functions may have been caused by the reduced relative abundance of the above-mentioned secondary metabolic pathways. This study may provide a theoretical basis for the study of the effects of microplastics and salinization on the soil environment under the dual pollution conditions.


Asunto(s)
Microplásticos , Polietileno , Plásticos , Suelo , Cloruros , Halógenos , Sulfatos , Microbiología del Suelo
11.
Sci Rep ; 14(1): 8597, 2024 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615119

RESUMEN

Oral poisoning can trigger diverse physiological reactions, determined by the toxic substance involved. One such consequence is hyperchloremia, characterized by an elevated level of chloride in the blood and leads to kidney damage and impairing chloride ion regulation. Here, we conducted a comprehensive genome-wide analysis to investigate genes or proteins linked to hyperchloremia. Our analysis included functional enrichment, protein-protein interactions, gene expression, exploration of molecular pathways, and the identification of potential shared genetic factors contributing to the development of hyperchloremia. Functional enrichment analysis revealed that oral poisoning owing hyperchloremia is associated with 4 proteins e.g. Kelch-like protein 3, Serine/threonine-protein kinase WNK4, Serine/threonine-protein kinase WNK1 and Cullin-3. The protein-protein interaction network revealed Cullin-3 as an exceptional protein, displaying a maximum connection of 18 nodes. Insufficient data from transcriptomic analysis indicates that there are lack of information having direct associations between these proteins and human-related functions to oral poisoning, hyperchloremia, or metabolic acidosis. The metabolic pathway of Cullin-3 protein revealed that the derivative is Sulfonamide which play role in, increasing urine output, and metabolic acidosis resulted in hypertension. Based on molecular docking results analysis it found that Cullin-3 proteins has the lowest binding energies score and being suitable proteins. Moreover, no major variations were observed in unbound Cullin-3 and all three peptide bound complexes shows that all systems remain compact during 50 ns simulations. The results of our study revealed Cullin-3 proteins be a strong foundation for the development of potential drug targets or biomarker for future studies.


Asunto(s)
Cloruros , Proteínas Cullin , Humanos , Acidosis , Biomarcadores , Cloruros/efectos adversos , Cloruros/toxicidad , Proteínas Cullin/metabolismo , Halógenos , Simulación del Acoplamiento Molecular , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo
12.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 523-532, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38597444

RESUMEN

OBJECTIVE: To investigate the effect of asiaticoside on blood pressure and relaxation of thoracic aorta in rats and explore the underlying mechanism. METHODS: SD rats treated with 50 and 100 mg/kg asiaticoside by daily gavage for 2 weeks were monitored for systolic blood pressure changes, and histological changes of the thoracic aorta were evaluated using HE staining. In isolated rat endothelium-intact and endothelium-denuded thoracic aorta rings, the effects of asiaticoside on relaxation of the aortic rings were tested at baseline and following norepinephrine (NE)- and KCl-induced constriction. The vascular relaxation effect of asiaticoside was further observed in NE-stimulated endothelium-intact rat aortic rings pretreated with L-nitroarginine methyl ester, indomethacin, zinc protoporphyrin Ⅸ, tetraethyl ammonium chloride, glibenclamide, barium chloride, Iberiotoxin, 4-aminopyridine, or TASK-1-IN-1. The aortic rings were treated with KCl and NE followed by increasing concentrations of CaCl2 to investigate the effect of asiaticoside on vasoconstriction induced by external calcium influx and internal calcium release. RESULTS: Asiaticoside at 50 and 100 mg/kg significantly lowered systolic blood pressure in rats without affecting the thoracic aorta histomorphology. While not obviously affecting resting aortic rings with intact endothelium, asiaticoside at 100 mg/kg induced significant relaxation of the rings constricted by KCl and NE, but its effects differed between endothelium-intact and endothelium-denuded rings. In endothelium-intact aortic rings pretreated with indomethacin, ZnPP Ⅸ, barium chloride, glyburide, TASK-1-IN-1 and 4-aminopyridine, asiaticoside did not produce significant effect on NE-induced vasoconstriction, and tetraethylammonium, Iberiotoxin and L-nitroarginine methyl ester all inhibited the relaxation effect of asiaticoside. In KCland NE-treated rings, asiaticoside obviously inhibited CaCl2-induced vascular contraction. CONCLUSION: Asiaticoside induces thoracic aorta relaxation by mediating high-conductance calcium-activated potassium channel opening, promoting nitric oxide release from endothelial cells and regulating Ca2+ influx and outflow, thereby reducing systolic blood pressure in rats.


Asunto(s)
Aorta Torácica , Compuestos de Bario , Cloruros , Triterpenos , Vasodilatación , Ratas , Animales , Presión Sanguínea , Células Endoteliales , Calcio , Cloruro de Calcio/farmacología , Nitroarginina/farmacología , Ratas Sprague-Dawley , 4-Aminopiridina/farmacología , Indometacina/farmacología , Ésteres/farmacología , Endotelio Vascular , Relación Dosis-Respuesta a Droga
13.
Pan Afr Med J ; 47: 37, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38586073

RESUMEN

Introduction: type 2 Diabetes mellitus is a chronic metabolic disease with devastating effects on patients and results in numerous healthcare challenges in terms of its management and the cost burden among the affected. Successful management involves maintaining optimal glycemic control to prevent complications, with adherence to antidiabetic medications playing a crucial role in achieving this objective. Additionally, maintaining a healthy electrolyte balance is key for overall well-being and physiological function. However, the correlation between glycated hemoglobin and electrolyte balance remains under investigated, particularly in patients with suboptimal adherence. The aim of this research was to study the relationship between glycated hemoglobin and electrolytes among diabetic patients with poor adherence to antidiabetic medications. Methods: this study was conducted at Samburu County Referral Hospital in Samburu County, Kenya. We employed a descriptive cross-sectional design focusing on adult diabetic patients aged 18 years and above who had visited the diabetic clinic over a three-month period. To evaluate their adherence levels, we employed a Morisky Medication Adherence Scale-8. Seventy-two diabetic patients who got adherence level scores of < 6 were categorized as having low adherence and their blood samples were collected for measuring glycated hemoglobin levels and electrolytes levels particularly potassium, sodium, calcium, magnesium, phosphorus and chloride. Relationship between electrolytes and glycated hemoglobin among diabetic patients with poor adherence to antidiabetics was determined using Karl Pearson correlation. Results: among the study participants, the lowest hemoglobin A1C (HbA1c) level recorded was 5.1% while the highest was 15.0% and the majority (41.7%) fell within the HbA1c range of 5-7%. A high proportion of individuals (58.3%) with poor adherence to antidiabetics had elevated HbA1c levels, indicating poor glycemic control. The correlations observed between glycated hemoglobin and electrolytes which included magnesium, sodium, chloride, calcium and phosphorus was r= -0.07, -0.32, -0.05 -0.24 and -0.04 respectively. Conclusion: this study concluded that there is a relationship between electrolytes and glycated hemoglobin among diabetic patients with poor adherence to antidiabetics. A statistically significant negative correlation was observed between glycated hemoglobin and calcium level (r=-0.2398 P ≤0.05) and also sodium (r=-0.31369 P≤0.05). A negative correlation (P≥0.05) was observed between phosphorus, magnesium, chloride and potassium with HbA1c levels though not statistically significant.


Asunto(s)
Diabetes Mellitus Tipo 2 , Adulto , Humanos , Hemoglobina Glucada , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Estudios Transversales , Calcio , Magnesio , Cloruros/uso terapéutico , Glucemia/metabolismo , Hipoglucemiantes/uso terapéutico , Electrólitos , Sodio , Potasio , Fósforo
14.
Environ Geochem Health ; 46(5): 158, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592363

RESUMEN

Groundwater, a predominant reservoir of freshwater, plays a critical role in providing a sustainable potable water and water for agricultural and industry uses in the In Salah desert region of Algeria. This research collected 82 underground water samples from Albian aquifers to assess water quality and identify hydrogeochemical processes influencing mineralization. To achieve this objective, various methods were employed to evaluate water quality based on its intended uses. The drinking water quality index utilized revealed the water potability status, while the indicators of irrigation potability were employed to evaluate its quality for agricultural purposes. Additionally, an assessment of groundwater susceptibility to corrosion and scaling in an industrial context was conducted using several indices, e.g., Langelier index, Larson-Skold index, Ryznar index, chloride-sulfate mass ratio, Puckorius index, aggressiveness index, and the Revelle index. The findings of this study revealed that the groundwater quality for consumption fell into four categories: good (2.44%), fair (29.27%), poor (65.85%), and non-potable (2.44%). Concerning agricultural irrigation, the indexical results indicated that 15.85% of the waters exhibited adequate quality, while 84.15% were questionable for irrigation. Calculations based on various corrosion and scaling evaluation indices showed that most wells were prone to corrosion, with a tendency for calcium bicarbonate deposit formation. Furthermore, the hydrochemical study identified three water types: Na-Cl (53.66%), Ca-Mg-Cl (37.80%), and Ca-Cl (8.54%) waters. Analyses of correlation matrices, R-type clustering, factor loadings, Gibbs diagrams, scatterplots, and chloro-alkaline indices highlighted that the chemistry of the Albian groundwater is fundamentally impacted by a number of processes such as silicate weathering, evaporite dissolution, ionic exchange, and anthropogenic inputs, that played impactful role in the aquifer's water chemistry.


Asunto(s)
Riego Agrícola , Agua Subterránea , África del Norte , Agricultura , Bicarbonatos , Cloruros
15.
Inorg Chem ; 63(15): 6776-6786, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38572830

RESUMEN

The heme-containing chlorite dismutases catalyze the rapid and efficient decomposition of chlorite (ClO2-) to yield Cl- and O2, and the catalytic efficiency of chlorite dismutase from Dechloromonas aromatica (DaCld) in catalyzing the decomposition of bromite (BrO2-) was dependent on pH, which was supposed to be caused by the conversion of active Cpd I to the inactive Cpd II by proton-coupled electron transfer (PCET) from the pocket Tyr118 to the propionate side chain of heme at high pH. However, the direct evidence of PCET and how the pH affects the efficiency of DaCld, as well as whether Cpd II is really inactive, are still poorly understood. Here, on the basis of the high-resolution crystal structures, the computational models in both acidic (pH 5.0) and alkaline (pH 9.0) environments were constructed, and a series of quantum mechanical/molecular mechanical calculations were performed. On the basis of our calculation results, the O-Br bond cleavage of BrO2- always follows the homolytic mode to generate Cpd II rather than Cpd I. It is different from the O-O cleavage of O2/H2O2 or peracetic acid catalyzed by the other heme-containing enzymes. Thus, in the subsequent O-O rebound reaction, it is the Fe(IV)═O in Cpd II that combines with the O-Br radical. Because the porphyrin ring in Cpd II does not bear an unpaired electron, the previously suggested PCET from Tyr118 to the propionate side chain of heme was not theoretically recognized in an alkaline environment. In addition, the O-O rebound step in an alkaline solution corresponds to an energy barrier that is larger than that in an acidic environment, which can well explain the pH dependence of the activity of DaCld. In addition, the protonation state of the propionic acid side chains of heme and the surrounding hydrogen bond networks were calculated to have a significant impact on the barriers of the O-O rebound step, which is mainly achieved by affecting the reactivity of the Fe(IV)═O group in Cpd II. In an acidic environment, the relatively weaker coordination of the O2 atom to Fe leads to its higher reactivity toward the O-O rebound reaction. These observations may provide useful information for understanding the catalysis of chlorite dismutases.


Asunto(s)
Betaproteobacteria , Cloruros , Peróxido de Hidrógeno , Oxidorreductasas , Propionatos , Peróxido de Hidrógeno/química , Catálisis , Protones , Concentración de Iones de Hidrógeno , Hemo/química
16.
Appl Microbiol Biotechnol ; 108(1): 289, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587649

RESUMEN

Rumen microbial urease inhibitors have been proposed for regulating nitrogen emission and improving nitrogen utilization efficiency in ruminant livestock industry. However, studies on plant-derived natural inhibitors of rumen microbial urease are limited. Urease accessory protein UreG, plays a crucial role in facilitating urease maturation, is a new target for design of urease inhibitor. The objective of this study was to select the potential effective inhibitor of rumen microbial urease from major protoberberine alkaloids in Rhizoma Coptidis by targeting UreG. Our results showed that berberine chloride and epiberberine exerted superior inhibition potential than other alkaloids based on GTPase activity study of UreG. Berberine chloride inhibition of UreG was mixed type, while inhibition kinetics type of epiberberine was uncompetitive. Furthermore, epiberberine was found to be more effective than berberine chloride in inhibiting the combination of nickel towards UreG and inducing changes in the second structure of UreG. Molecular modeling provided the rational structural basis for the higher inhibition potential of epiberberine, amino acid residues in G1 motif and G3 motif of UreG formed interactions with D ring of berberine chloride, while interacted with A ring and D ring of epiberberine. We further demonstrated the efficacy of epiberberine in the ruminal microbial fermentation with low ammonia release and urea degradation. In conclusion, our study clearly indicates that epiberberine is a promising candidate as a safe and effective inhibitor of rumen microbial urease and provides an optimal strategy and suitable feed additive for regulating nitrogen excretion in ruminants in the future. KEY POINTS: • Epiberberine is the most effective inhibitor of rumen urease from Rhizoma Coptidis. • Urease accessory protein UreG is an effective target for design of urease inhibitor. • Epiberberine may be used as natural feed additive to reducing NH3 release in ruminants.


Asunto(s)
Berberina , Berberina/análogos & derivados , Animales , Berberina/farmacología , Ureasa , Amoníaco , Cloruros , Rumen , Inhibidores Enzimáticos/farmacología , Nitrógeno , Rumiantes
17.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38612883

RESUMEN

Osteoporosis stands out as a prevalent skeletal ailment, prompting exploration into potential treatments, including dietary strontium ion supplements. This study assessed the efficacy of supplementation of three strontium forms-strontium citrate (SrC), strontium ranelate (SrR), and strontium chloride (SrCl)-for enhancing bone structure in 50 female SWISS mice, aged seven weeks. In total, 40 mice underwent ovariectomy, while 10 underwent sham ovariectomy. Ovariectomized (OVX) mice were randomly assigned to the following groups: OVX (no supplementation), OVX + SrR, OVX + SrC, and OVX + SrCl, at concentrations equivalent to the molar amount of strontium. After 16 weeks, micro-CT examined trabeculae and cortical bones, and whole-bone strontium content was determined. Results confirm strontium administration increased bone tissue mineral density (TMD) and Sr content, with SrC exhibiting the weakest effect. Femur morphometry showed limited Sr impact, especially in the OVX + SrC group. This research highlights strontium's potential in bone health, emphasizing variations in efficacy among its forms.


Asunto(s)
Ácido Cítrico , Osteoporosis , Estroncio , Tiofenos , Femenino , Animales , Ratones , Densidad Ósea , Cloruros , Citratos , Osteoporosis/tratamiento farmacológico , Halógenos , Modelos Animales de Enfermedad
18.
J Toxicol Sci ; 49(3): 95-103, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38432956

RESUMEN

This study was conducted as part of an investigation into the cause of vesnarinone-associated agranulocytosis. When HL-60 cells were exposed to vesnarinone for 48 hr, little cytotoxicity was observed, although reduced glutathione (GSH) content decreased in a concentration-dependent manner. Significant cytotoxicity and reactive oxygen species (ROS) production were observed when intracellular GSH content was reduced by treatment with L-buthionine-(S, R)-sulphoximine. The involvement of myeloperoxidase (MPO) metabolism was suggested, as when HL-60 cells were exposed to a reaction mixture of vesnarinone-MPO/H2O2/Cl-, cytotoxicity was also observed. In contrast, the presence of GSH (1 mM) protected against these cytotoxic effects. Liquid chromatography-mass spectrometry analysis of the MPO/H2O2/Cl- reaction mixture revealed that vesnarinone was converted into two metabolites, (4-(3,4-dimethoxybenzoyl)piperazine [Metabolite 1: M1] and 1-chloro-4-(3,4-dimethoxybenzoyl)piperazine [Metabolite 2: M2]). M2 was identified as the N-chloramine form, a reactive metabolite of M1. Interestingly, M2 was converted to M1, which was accompanied by the conversion of GSH to oxidized GSH (GSSG). Furthermore, when HL-60 cells were exposed to synthetic M1 and M2 for 24 hr, M2 caused dose-dependent cytotoxicity, whereas M1 did not. Cells were protected from M2-derived cytotoxicity by the presence of GSH. In conclusion, we present the first demonstration of the cytotoxic effects and ROS production resulting from the MPO/H2O2/Cl- metabolic reaction of vesnarinone and newly identified the causative metabolite, M2, as the N-chloramine metabolite of M1, which induces cytotoxicity in HL-60 cells. Moreover, a protective role of GSH against the cytotoxicity was revealed. These findings suggest a possible nonimmunological cause of vesnarinone agranulocytosis.


Asunto(s)
Agranulocitosis , Antineoplásicos , Pirazinas , Quinolinas , Humanos , Cloraminas , Glutatión , Células HL-60 , Peróxido de Hidrógeno/toxicidad , Especies Reactivas de Oxígeno , Agranulocitosis/inducido químicamente , Cloruros , Piperazinas
19.
Nat Commun ; 15(1): 2085, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453905

RESUMEN

Chloride Intracellular Channel (CLIC) family members uniquely transition between soluble and membrane-associated conformations. Despite decades of extensive functional and structural studies, CLICs' function as ion channels remains debated, rendering our understanding of their physiological role incomplete. Here, we expose the function of CLIC5 as a fusogen. We demonstrate that purified CLIC5 directly interacts with the membrane and induces fusion, as reflected by increased liposomal diameter and lipid and content mixing between liposomes. Moreover, we show that this activity is facilitated by acidic pH, a known trigger for CLICs' transition to a membrane-associated conformation, and that increased exposure of the hydrophobic inter-domain interface is crucial for this process. Finally, mutation of a conserved hydrophobic interfacial residue diminishes the fusogenic activity of CLIC5 in vitro and impairs excretory canal extension in C. elegans in vivo. Together, our results unravel the long-sought physiological role of these enigmatic proteins.


Asunto(s)
Caenorhabditis elegans , Cloruros , Animales , Cloruros/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Canales de Cloruro/metabolismo , Liposomas
20.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(3): 331-334, 2024 Mar 10.
Artículo en Chino | MEDLINE | ID: mdl-38448024

RESUMEN

OBJECTIVE: To explore the genetic etiology of two patients with Gitelman syndrome (GS). METHODS: Two patients who had presented at the Linyi People's Hospital in January and June 2022 respectively were selected as the study subjects. Peripheral blood samples of them were collected and subjected to whole exome sequencing (WES). Electrolyte levels in their serum and urine were detected. Candidate variants were verified by Sanger sequencing. PyMOL software was used to predict the impact of the variants on the protein structure. RESULTS: Patient 1 was a 27-year-old female with decreased serum levels of sodium, potassium, chloride and magnesium, along with decreased urine chloride and calcium. WES revealed that she has harbored compound heterozygous variants of the SLC12A3 gene, namely c.1456G>A (p.D486N) and c.179C>T (p.T60M). The former was inherited from her mother and known to be pathogenic. Patient 2 was a 4-year-old male with lower serum sodium, chloride and magnesium levels, and his serum potassium level was found to be critically low. He was found to harbor compound heterozygous variants of c.602-16G>A and c.805_806insTTGGCGTGGTCTCGGTCA (p.V268_T269insIGVVSV) of the SLC12A3 gene, which were inherited from his mother and father, respectively. Based on the guidelines from the American College of Medical Genetics and Genomics, both variants were predicted to be pathogenic (PVS1+PM2_Supporting+PP3; PVS1+PM2_Supporting+PM4). CONCLUSION: The above heterozygous variants of the SLC12A3 gene probably underlay the GS in these patients.


Asunto(s)
Síndrome de Gitelman , Humanos , Femenino , Masculino , Adulto , Preescolar , Síndrome de Gitelman/genética , Cloruros , Magnesio , Potasio , Sodio , Miembro 3 de la Familia de Transportadores de Soluto 12/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...